

Variable Plug-in Motor A6VE

RE 91606/06.12

1/40

Replaces: 10.07

Data sheet

Series 63

Size Nominal pressure/Maximum pressure

28 to 160 400 bar/450 bar 250 350 bar/400 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
HD - Proportional control hydraulic	9
EP - Proportional control electric	12
HZ - Two-point control hydraulic	15
EZ – Two-point control electric	16
HA - Automatic control high-pressure related	17
DA - Automatic control speed-related	21
Electric travel direction valve (for DA)	23
Dimensions 28 to 250	24
Connector for solenoids	28
Flushing and boost pressure valve	29
Counterbalance valve BVD and BVE	31
Counterbalance valve integrated BVI	35
Speed sensor	38
Installation instructions	39
General instructions	40

Features

- Variable plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- Far-reaching integration in mechanical gearbox due to a recessed mounting flange located on the center of the case (extremely space-saving construction)
- Easy to install, simply plug into the mechanical gearbox (no configuration specifications to be observed)
- Tested unit ready to install
- For use especially in mobile applications
- The displacement can be infinitely changed from $V_{g \text{ max}}$ to $V_{g \text{ min}}$ = 0.
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and low-pressure side and with increasing displacement.

Ordering code for standard program

Α	6V	E					/	63	W		-	V								
(01	02	03	04	05	06		07	08	09	<u> </u>	10	11	12	13	14	15	16	17	18
Δ	Axial p	iston	unit																	
			sign, v	ariable																A6\
_	nera	ting m	ode		,															
			in vers	ion																Е
	Geom		lisplac	ement	, see ta	ble of	value	s on na	age 7					28	55	80	107	160	250	
				Official	, 000 10	1010 01	value	on pe	.gc						00	00	107	100		
		ol devi										4.0	. 1	28	55	80	107	160	250	
	Propo	rtional	contro	oi nyar	aulic						_	p = 10		•	•	•	•	•	•	HD:
-	$\Delta p = 25 \text{ bar}$ Two-point control hydraulic													_	_	_	_	_	•	HZ
	Two point control hydraulic													•	 	 	 _	•	_	HZ
															-	HZ				
Ī	Proportional control electric 12 \												12 V	•	•	•	•	•	•	EP ¹
	24 V • • • • •														•	EP2				
F	Two-point control electric 12 V											12 V	•	_	_	_	•	•	EZ1	
04	24												24 V	•				•	•	EZ2
	12.													_	•	•	•	_		EZ
													24 V	_	•	•	•	_	-	EZ4
- 1		natic co	ontrol e relat	ad				imum p) bar	•	•	•	•	•	•	HA1
	nign-p	ii essui	e reiai	eu				ssure i						•	•	•	•	•	•	HA2
-	A	4					th min	imum p	oressu	ire incr	ease /	\p ≤ 10) bar	-	•	•	•	•	-	HA3
				•	related		dirooti	on vol	10					-	-	-	-	-	•	DA
		_			draulic ctric tra					ctric V	-0	ircuit	24 V	_					 _ 	DAS
							. 55110	vaive	1 010	01110 V	g max C	Ouit	∠-T V							DAG
					or HD,		. \													
ว5 ⊢		•			(witho	ut coc	ie)													
	Pressi	ure co	ntrol, fi	ixed se	etting															D
C	Overri	de of o	contro	ls HA																
ا م	Witho	ut ove	rride (v	withou	t code)															

06	Without override (without code)		
06	Hydraulic override, remote control, proportional	Т	

Series

07	Series 6, index 3	63

Direction of rotation

08 Viewed on drive shaft, bidirectional

	Setting ranges for displacement ²⁾	28	55	80	107	160	250	
	$V_{g min} = 0$ to 0.7 $V_{g max}$ (without code)	•	•	•	•	•	-	
09	$V_{g min} = 0 \text{ to } 0.4 V_{g max}$ $V_{g max} = V_{g max} \text{ to } 0.8 V_{g max}$	_	_	_	_	_	•	1
	$V_{g min} > 0.4 V_{g max}$ to 0.8 $V_{g max}$ $V_{g max} = V_{g max}$ to 0.8 $V_{g max}$	_	ı	_	_	_	•	2

	Seals	28	55	80	107	160	250	
10	FKM (fluor-caoutchouc)	•	•	•	•	•	•	٧

-= Not available

= Preferred program

O = On request1) Only possible in combination with port plate 22 (integrated counterbalance valve).

²⁾ Specify exact settings for Vg min and Vg max in plain text when ordering: Vg min = ... cm³, Vg max = ... cm³

Ordering code for standard program

		•							•	O										
Δ	\6V	E					/	63	W		-	V								
	01	02	03	04	05	06		07	08	09		10	11	12	13	14	15	16	17	18
	Drive s	shafts												28	55	80	107	160	250	
	Spline	Splined shaft DIN 5480													_	•	-	•	_	Α
11	- •												•	_	•	_	•	Z		
	Mount	ina fla	nace											28	55	80	107	160	250	
	Simila			9-2								-hole			99	•	•	•		L
12	O. Tilla		000								_	-hole		_	_	_	_	_	•	<u>-</u> М
	Modified adapter flange 2-hole											_	-	_	•	_	_	U		
	Port plates for service lines ³⁾ 28 55 80 107 160 250																			
	Port plates for service lines³) 28 55 80 107 160 250 SAE flange ports 02 0 ●														020					
	SAE flange ports A and B at side, opposite 02 0 7															•			•	020
	A and B at side, opposite 7 ● SAE flange ports 22 1 −														•	•		•	_	221
	A and B at bottom only with integrated counterbalance valve BVI ⁴) 22 1 2													_	•			•	_	222
13					essure					VD		7								370
					ce valv		rai voo	101	٦	• •		•	0	_	-	_	•	_	-	378
											3	8	8	_	•	•	•	•	●9)	380
									В	VE	3	8		_	_	_	•	•	_9)	388
,	Valves	(800	nanes	29 to	37)								^							
	Without valve 0																			
	Brake	releas	se valv	e integ	rated	int	ernal	ducting	a				1	İ						
14					release	`		piping	,				2	İ						
	Flushing and boost pressure valve mounted 7																			
					ounted								8	1						
	Speed	Loono	a r (aa		. 20)								•	28	55	80	107	160	250	
	Witho				: 30)									20	•	•	107	160	250	0
15					senso	or								0	0	0	0	0	0	U
				r mour										0	0	0	0	0	0	V
	<u> </u>				,		·O)									00.1	100			
	Conne				s (see p out sole			ith hy	draulia.	contro	-lo)					28 to	160	2:	50	0
	(size 2				Jul Sol	enoia,	Offig W	iiii iiye	liaulic	Contro)IS)						_			U
16					nnecto	ır 9-niı	n – wit	hout s	unnre	ssor di	inde		,							P
					tor – w	<u>.</u>						5)								•
						Terrout	оаррі	00001	1000			-,								
	Begin									• \				28	55	80	107	160	250	
	Port p	late 0	2, 37, 3	38				andard				7.04\		•	•	•	•	•	•	Α
17	Do:-1	lot- O	0					andard			, EP, E	∠, IJA)	'							В
	Port plate 22										•	•		•	_	В				
						al V _g	max (SI	anuaro	ior H	ردی				_						В
	Standa																		-	
					ıt code															
Standard version with installation variants (e. g. T ports against standard open or closed)									-Y											
- 1	Canal	al vara	ion																	

- = Available
- O = On request
- -= Not available

= Preferred program

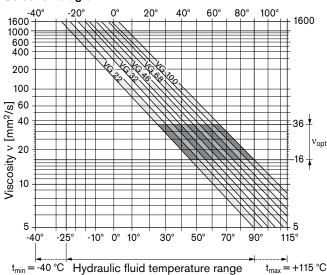
-S

3) Metric fastening thread

Special version

- 4) Only for HZ3 and HA3. Add specification of integrated counterbalance valve BVI, see separate ordering code on page 35. Note the restrictions on page 36.
- 5) Only possible in conjunction with HD, EP and HA1 and HA2 control
- 6) Specify ordering code of counterbalance valve according to
- data sheet (BVD RE 95522, BVE RE 95525) separately.
- 7) Note the restrictions on page 32.
- s) Specify ordering code of sensor according to data sheet (DSA – RE 95133) separately and observe the requirements on the electronics.
- 9) Counterbalance valve MHB32, please contact us.

Technical data


Bosch Rexroth AG

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum viscosity range (v_{opt.}, shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case with a flushing and boost pressure valve (see page 29).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature	viscosity [iiiii 73]	$T_{min} \ge -50 \text{ °C}$ $T_{opt} = +5 \text{ °C to } +20 \text{ °C}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{\text{max}} = 1600$	$T_{St} \ge -40 ^{\circ}\text{C}$	$t \le 3$ min, without load (p ≤ 50 bar), $n \le 1000$ rpm (sizes 28 to 160), $n \le 0.25 \bullet n_{nom}$ (size 250)
Permissible temperature	e difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400	T = -40 °C to -25 °C	At $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

¹⁾ At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

²⁾ Size 250, please contact us.

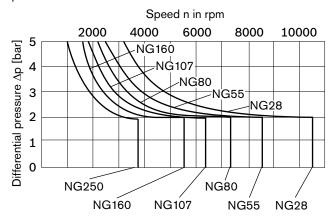
Technical data

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

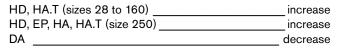
Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range


The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Influence of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

With the following controls, an increase in the case pressure has no influence on the beginning of control:

EP, HA (sizes 28 to 160)

The factory settings for the beginning of control are made at $p_{abs}=2$ bar (sizes 28 to 160) or $p_{abs}=1$ bar (size 250) case pressure.

Direction of flow

Direction of rotation, viewed on drive shaft								
cw	ccw							
A to B	B to A							

Technical data

Operating pressure range

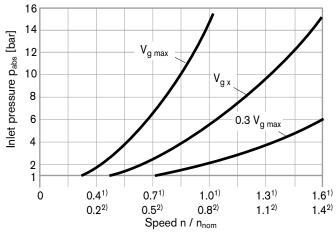
(operating with mineral oil)

Pressure at service line port A or B

Sizes 28 to 160

Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max}	450 bar absolute
Single operating period	10 s
Total operating period	300 h
Size 250	

Nominal pressure of


Morninal pressure p _{nom}	OOO Dai absolute
Maximum pressure p _{max}	400 bar absolute
Single operating period	10 s
Total operating period	300 h
Minimum pressure (high-pressure side) _	25 bar absolute
Summation pressure (pressure A + pressure	e B) p _{Su} _ 700 bar

Rate of pressure change R_{A max}

with integrated pressure-relief valve 9000 bar/s without pressure-relief valve 16000 bar/s

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operation mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pressure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).

¹⁾ For sizes 28 to 160

This diagram is valid only for the optimum viscosity range from $v_{opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}.$

Please contact us if the above conditions cannot be satisfied.

Values for other hydraulic fluids, please contact us.

Definition

350 har absolute

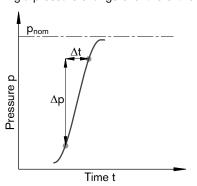
Nominal pressure pnom

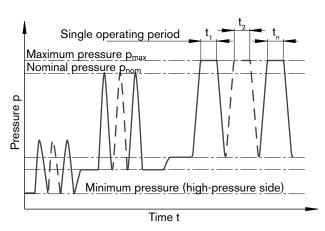
The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.


Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

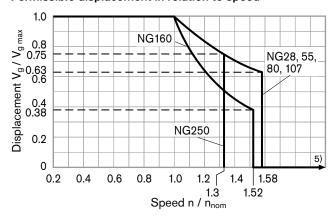
Total operating period = $t_1 + t_2 + ... + t_n$

²⁾ For size 250

Technical data

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size		NG	28	55	80	107	160	250
Displacement geometric ¹⁾ ,	$V_{g max}$	cm ³	28.1	54.8	80	107	160	250
per revolution	$V_{g min}$	cm ³	0	0	0	0	0	0
	V_{gx}	cm ³	18	35	51	68	61	188
Speed maximum ²⁾ (while adhering to the maximum permissible input flow)								
at V _{g max}	n_{nom}	rpm	5550	4450	3900	3550	3100	2700
At $V_g < V_{gx}$ (see diagram below)	n_{max}	rpm	8750	7000	6150	5600	4900	3600
at V _{g 0}	n _{max}	rpm	10450	8350	7350	6300	5500	3600
Input flow ³⁾								
at n_{nom} and $V_{\text{g max}}$	q _{V max}	L/min	156	244	312	380	496	675
Torque ⁴⁾								
At $V_{g max}$ and $\Delta p = 400$ bar	T	Nm	179	349	509	681	1019	_
At $V_{g \text{ max}}$ and $\Delta p = 350$ bar	T	Nm	157	305	446	596	891	1391
Rotary stiffness								
$V_{g max}$ to $V_{g/2}$	C _{min}	KNm/rad	6	10	16	21	35	60
V _{g/2} to 0 _(interpolated)	C _{max}	KNm/rad	18	32	48	65	105	181
Moment of inertia for rotary group	J_{GR}	kgm²	0.0014	0.0042	0.008	0.0127	0.0253	0.061
Maximum angular acceleration	α	rad/s²	47000	31500	24000	19000	11000	10000
Case volume	٧	L	0.5	0.75	1.2	1.5	2.4	3.0
Mass (approx.)								
Port plate 02, 37, 38	m	kg	16	26	34	47	64	90
Port plate 22	m	kg	-	35	43	53	72	_


¹⁾ The minimum and maximum displacement are infinitely adjustable, see ordering code, page 2. (standard setting for size 250 if not specified in the order: $V_{g \, min} = 0.2 \cdot V_{g \, max}, V_{g \, max} = V_{g \, max}$).

- for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s
- with hydraulic fluid based on mineral oils
- 3) Restriction of input flow with counterbalance valve, see page 32
- 4) Torque without radial force, with radial force see page 8

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible displacement in relation to speed

5) Values in this range on request

²⁾ The values are valid:

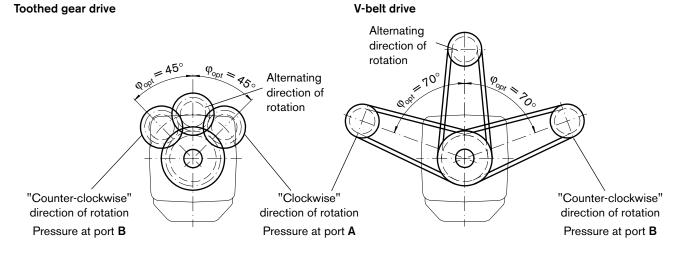
Technical data

Permissible radial and axial forces of the drive shafts

Size	NG		28	55	80	107	160	250
Drive shaft	Ø	mm	30	30	40	40	50	50
Maximum radial force ¹⁾	F _{q max}	N	4838	7581	10283	13758	16435	1200 ³⁾
at distance a (from shaft collar)	_ a	mm	17.5	17.5	22.5	22.5	27.5	41
with permissible torque	T _{max}	Nm	179	281	509	681	1019	4)
Permissible pressure Δp at V _{g r}	max Pnom perm.	bar	400	322	400	400	400	4)
Maximum axial force ²⁾ F _{ax} ±∴	+F _{ax max}	N	315	500	710	900	1120	1200
i ax ±	── −F _{ax max}	N	0	0	0	0	0	0
Permissible axial force per bar operating pressure	F _{ax perm./bar}	N/bar	4.6	7.5	9.6	11.3	15.1	4)

- 1) With intermittent operation.
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.
- 4) Please contact us.

Note


Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \bullet n}{1000 \bullet \eta_v} \qquad [L/min] \quad V_g = \text{Displacement per revolution in cm}^3$$

$$\Delta p = \text{Differential pressure in bar}$$

$$Speed \qquad n = \frac{q_V \bullet 1000 \bullet \eta_v}{V_g} \qquad [min^{-1}] \qquad n = \text{Speed in rpm}$$

$$\eta_v = \text{Volumetric efficiency}$$

$$Torque \qquad T = \frac{V_g \bullet \Delta p \bullet \eta_{mh}}{20 \bullet \pi} \qquad [Nm] \qquad \eta_{mh} = \text{Mechanical-hydraulic efficiency}$$

$$\eta_t = \text{Total efficiency} (\eta_t = \eta_v \bullet \eta_{mh})$$

$$Power \qquad P = \frac{2 \pi \bullet T \bullet n}{60000} = \frac{q_v \bullet \Delta p \bullet \eta_t}{600} \quad [kW]$$

HD - Proportional control hydraulic

The proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to

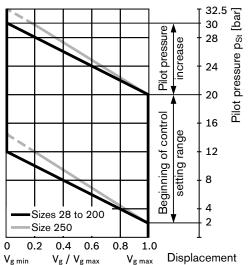
- Beginning of control at $V_{g \text{ max}}$ (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{q min} (minimum torque, maximum permissible speed at maximum pilot pressure)

- Maximum permissible pilot pressure: p_{St} = 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 10 bar.
- The beginning of control and the HD characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.
- A leakage flow of maximum 0.3 L/min can escape at port X due to internal leakage (operating pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

HD₁ Pilot pressure increase $\Delta p_{St} = 10$ bar


A pilot pressure increase of 10 bar at port X results in a decrease in displacement from $V_{g max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g max}$ to 0.2 $V_{g max}$ (size 250).

Beginning of control, setting range ___ 2 to 20 bar

Standard setting:

Beginning of control at 3 bar (end of control at 13 bar)

HD1 characteristic

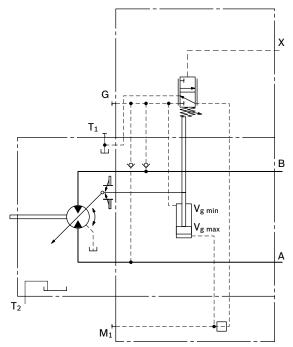
Pilot pressure increase $\Delta p_{St} = 25$ bar

A pilot pressure increase of 25 bar at port X results in a decrease in displacement from $V_{g\,max}$ to 0 cm³ (sizes 28 to 160) or from $V_{g max}$ to 0.2 $V_{g max}$ (size 250).

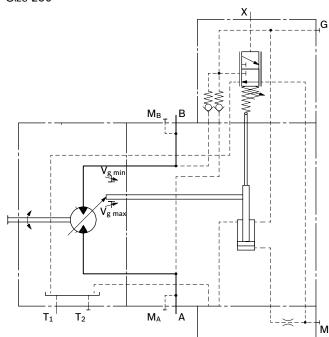
Beginning of control, setting range _____

Standard setting:

Beginning of control at 10 bar (end of control at 35 bar)


HD2 characteristic

HD - Proportional control hydraulic


Schematic HD1, HD2

Sizes 28 to 160

Schematic HD1, HD2

Size 250

Note

The spring return feature in the control part is not a safety device

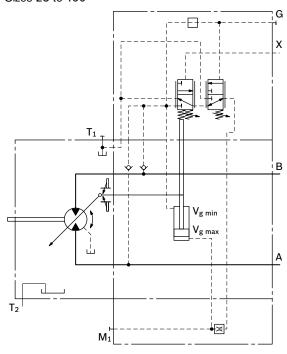
The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

HD - Proportional control hydraulic

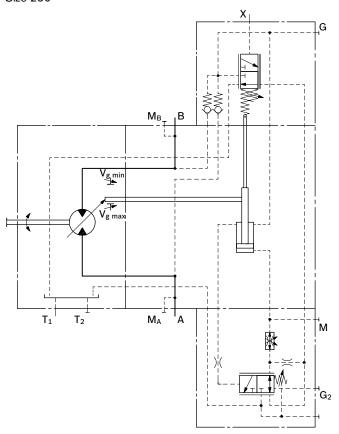
HD.D Pressure control, fixed setting

The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve

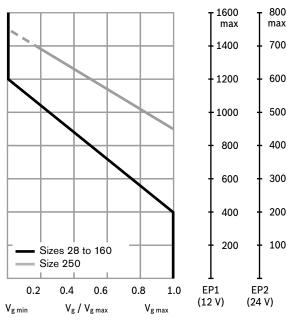
Sizes 28 to 160 _______ 80 to 400 bar Size 250 _____ 80 to 350 to bar


Schematic HD.D

Sizes 28 to 160

Schematic HD.D

Size 250


EP - Proportional control electric

The proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid (sizes 28 to 200) or proportional valve (sizes 250).

For size 250, the pilot oil supply at port P requires an external pressure of $p_{min} = 30$ bar ($p_{max} = 100$ bar).

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

The following only needs to be noted for size 250:

The beginning of control and the EP characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

Technical data, solenoid

Sizes 28 to 160

	EP1	EP2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Control current			
Beginning of control	400 mA	200 mA	
End of control	1200 mA	600 mA	
Limiting current	1.54 A	0.77 A	
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω	
Dither frequency	100 Hz	100 Hz	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

RE 95200
RE 95201
RE 95202
95203, RE 95204

- Analog amplifier RA _____ RE 952
- Electric amplifier VT 2000, series 5X (see RE 29904) (for stationary application)

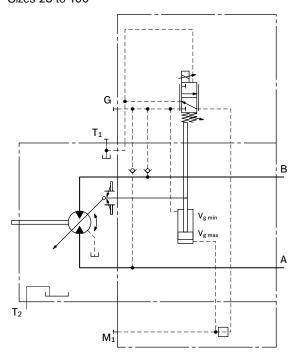
Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics

Technical data, proportional valve Size 250

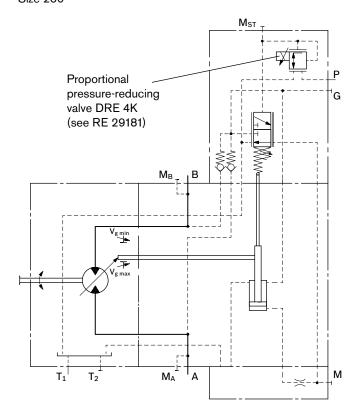
	EP1	EP2
Voltage	12 V (±20 %)	24 V (±20 %)
Beginning of control at V _{g max}	900 mA	450 mA
End of control at V _{g min}	1400 mA	700 mA
Limiting current	2.2 A	1.0 A
Nominal resistance (at 20 °C)	$2.4~\Omega$	12 Ω
Duty cycle	100 %	100 %
Type of protection see connector design page 28		

See also proportional pressure-reducing valve DRE 4K (RE 29181).

Note


The spring return feature in the control part is not a safety device

The control part can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.


Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

EP - Proportional control electric

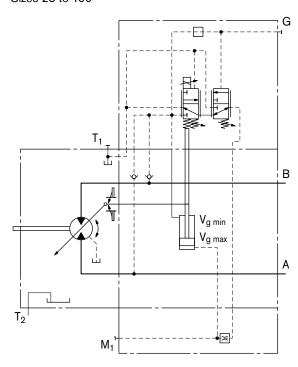
Schematic EP1, EP2 Sizes 28 to 160

Schematic EP1, EP2 Size 250

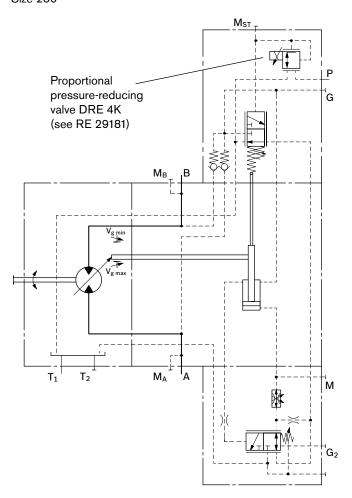
EP - Proportional control electric

EP.D Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

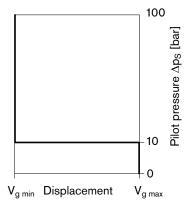
Setting range of the pressure control valve


Sizes 28 to 160 ______ 80 to 400 bar Size 250 _____ 80 to 350 to bar

Schematic EP.D

Sizes 28 to 160

Schematic EP.D Size 250

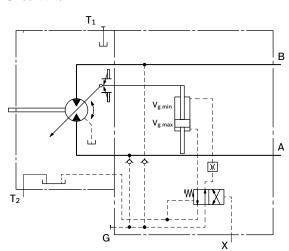


HZ - Two-point control hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g\;\text{min}}$ or $V_{g\;\text{max}}$ by switching the pilot pressure at port X on or off.

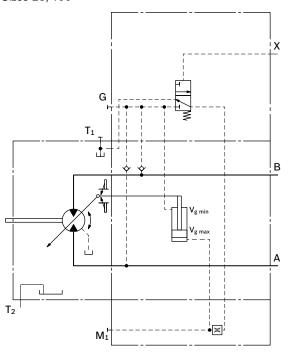
- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{q min} (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)

Characteristic HZ

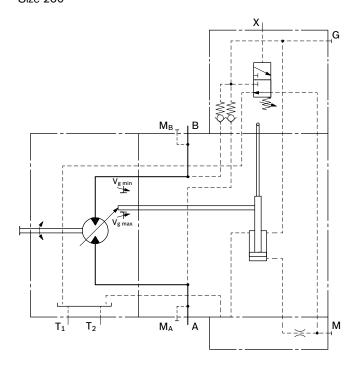

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

- A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.


Schematic HZ3

Sizes 55 to 107


With integrated counterbalance valve BVI, see page 37

Schematic HZ1 Sizes 28, 160

Schematic HZ

Size 250

EZ - Two-point control electric

The two-point electric control with switching solenoid (sizes 28 to 160) or control valve (size 250) allows the displacement to be set to either $V_{g\,\text{min}}$ or $V_{g\,\text{max}}$ by switching the electric current at the switching solenoid or control valve on or off.

Note

The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 450 bar can occur at port G.

Technical data, solenoid with Ø37

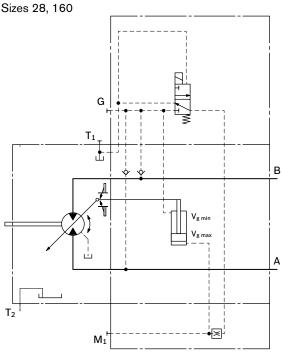
Sizes 28, 160

	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Displacement V _{g max}	de-energized	de-energized
Displacement V _{g min}	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %

Type of protection see connector design page 28

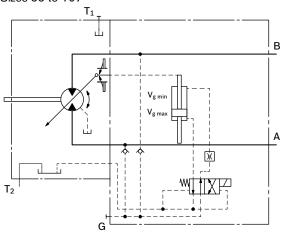
Technical data, solenoid with Ø45

Sizes 55 to 107

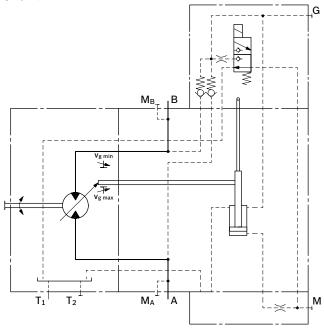

	EZ3	EZ4	
Voltage	12 V (±20 %)	24 V (±20 %)	
Displacement V _{g max}	de-energized	de-energized	
Displacement V _{g min}	energized	energized	
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω	
Nominal power	30 W	30W	
Minimum required current	1.5 A	0.75 A	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			

Technical data, control valve

Size 250


	EZ1	EZ2	
Voltage	12 V (±20 %)	24 V (±20 %)	
Displacement V _{g max}	de-energized	de-energized	
Displacement V _{g min}	energized	energized	
Nominal resistance (at 20 °C)	6 Ω	23 Ω	
Nominal power	26 W	26W	
Minimum required current	2 A	1.04 A	
Duty cycle	100 %	100 %	
Type of protection see connector design page 28			

Schematic EZ1, EZ2


Schematic EZ3, EZ4

Sizes 55 to 107

Schematic EZ1, EZ2

Size 250

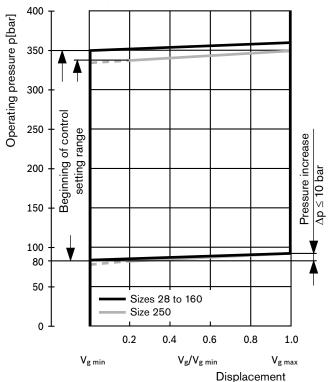
The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VE motor with HA control is $V_{g \, min}$ (maximum speed and minimum torque). The control unit measures internally the operating pressure at A or B (no control line required) and upon reaching the beginning of control, the controller swivels the motor from $V_{q min}$ to $V_{q max}$ with increase of pressure. The displacement is modulated between V_{q min} and V_{g max}, thereby depending on load conditions.

- Beginning of control at V_{g min} (minimum torque, maximum
- End of control at V_{g max} (maximum torque, minimum speed)

- For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- The control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.
 - Please note that pressures up to 450 bar can occur at port G.
- The beginning of control and the HA characteristic are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic. Only for HA1T (sizes 28 to 160) and HA1, HA2, HA3, HA.T, (size 250).
- A leakage flow of maximum 0.3 L/min is present at port X (operating pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir. Only for control HA.T.

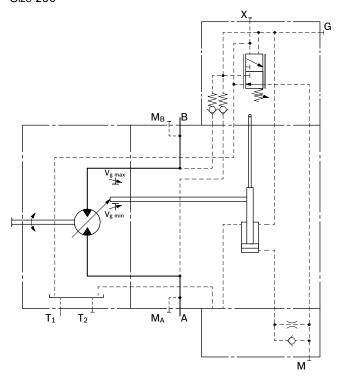
HA1, HA3 With minimum pressure increase


An operating pressure increase of $\Delta p \leq$ approx. 10 bar results in an increase in displacement from 0 cm³ to $V_{g max}$ (sizes 28 to 160) or from 0.2 $V_{g max}$ to $V_{g max}$ (size 250).

Beginning of control, setting range

Sizes 28 to 160	80 to 350 bar
Size 250	80 to 340 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 300 bar.


Characteristic HA1, HA3

Schematic HA1 Sizes 28 to 160

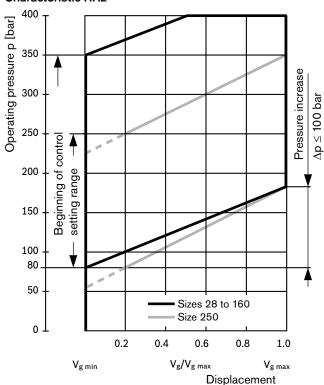
M₁
T₁
V_{g min}
V_{g max}
A
T₂

Schematic HA3

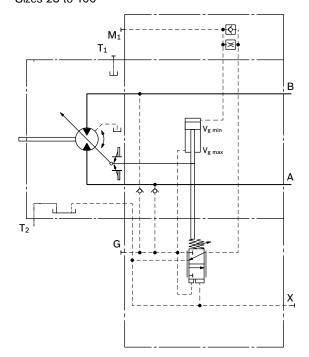
Sizes 55 to 160

With integrated counterbalance valve BVI, see page 37

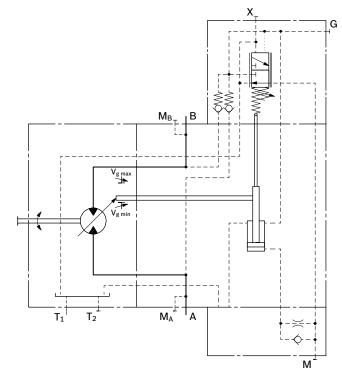
HA2 With pressure increase


An operating pressure increase of $\Delta p=$ approx. 100 bar results in an increase in displacement from 0 cm³ to V_{g max} (sizes 28 to 160) or from 0.2 V_{g max} to V_{g max} (size 250).

Beginning of control, setting range


Sizes 28 to 160 _______ 80 to 350 bar Size 250 80 to 250 bar

Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 200 bar.


Characteristic HA2

Schematic HA2 Sizes 28 to 160

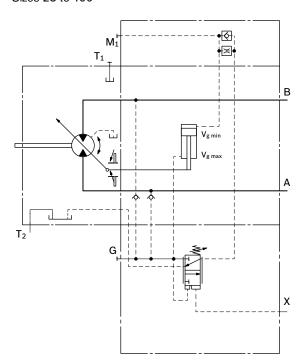
Size 250

HA.T Override hydraulic remove control, proportional

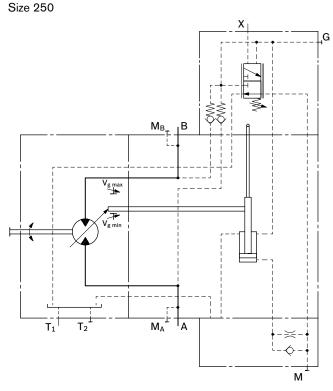
With the HA.T control, the beginning of control can be influenced by applying a pilot pressure to port X.

For each 1 bar of pilot pressure increase, the beginning of control is reduced by 17 bar (sizes 28 to 160) or 8 bar (size 250).

Example (sizes 28 to 160):

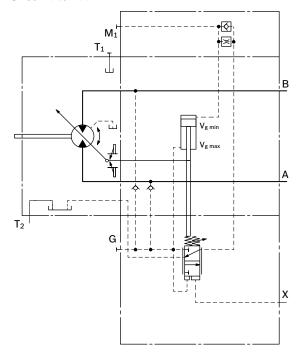

Beginning of control setting	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar

Note


Maximum permissible pilot pressure 100 bar.

Schematic HA1.T

Sizes 28 to 160



Schematic HA1.T

Schematic HA2.T

Sizes 28 to 160

DA - Automatic control speed-related

The variable motor A6VE with automatic speed-related control, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

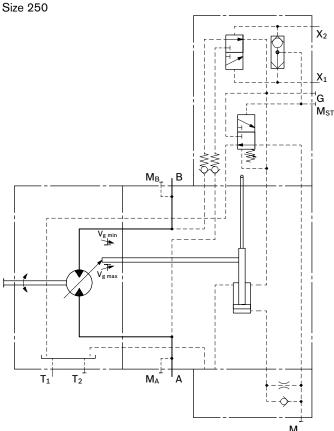
Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

Pressure ratio p_{St}/p_{HD}: 3/100, 5/100

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control.


The beginning of control and the DA characteristic are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 5) and thus a parallel shift of the characteristic.

Hydraulic travel direction valve

Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures connections X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X_1
CCW	В	X ₂

Schematic DA

DA - Automatic control speed-related

DA3 Electric travel direction valve + electric V_{g max}-circuit

The travel direction valve is either spring offset or switched by energizing switching solenoid a, depending on the direction of rotation (travel direction).

When the switching solenoid b is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{g\ max}$ -circuit).

Technical data, solenoid a with Ø37


(travel direction valve)

		DA3
Voltage		24 V (±20 %)
Direction of rotation	Operating pressure in	
ccw	В	de-energized
cw	Α	energized
Nominal resistance (at 20 °C)		21.7 Ω
Nominal power		26.5 W
Minimum required current		0.67 A
Duty cycle		100 %
Type of protection see connecte		or design page 28

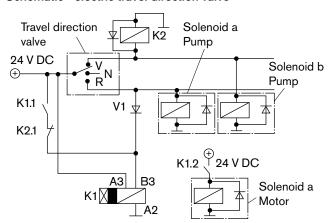
Technical data, solenoid b with Ø37

(electric override)

	DA3,	
Voltage	24 V (±20 %)	
No override	de-energized	
Displacement V _{g max}	energized	
Nominal resistance (at 20 °C)	21.7 Ω	
Nominal power	26.5 W	
Minimum required current	0.67 A	
Duty cycle	100 %	
Type of protection see connector design page 28		

Electric travel direction valve (for DA)

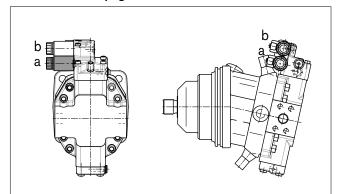
Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. g. A4VG with DA control valve).


If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

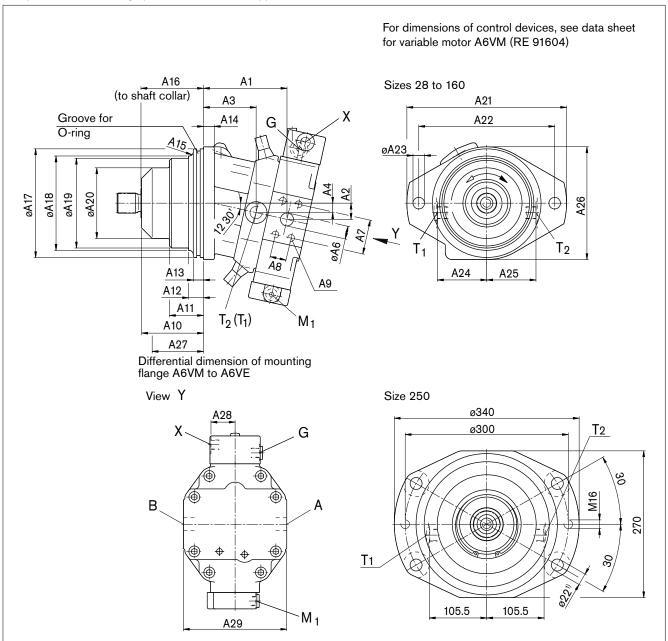
- the neutral position,
 the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- reversing,
 the electric circuitry causes the travel direction valve on the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

As a result, jerky deceleration or braking is prevented in both cases.


Schematic - electric travel direction valve

Note

The shown diodes and relays are not included in the delivery of the motor.


DA3 control (see page 22)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HD1, HD2 - Proportional control hydraulic

Port plate 02 - SAE flange port A and B at side, opposite

Ports

Size	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ²⁾ DIN 3852 ³⁾
28	3/4 in	M18 x 1.5; 12 deep
55	3/4 in	M18 x 1.5; 12 deep
80	1 in	M18 x 1.5; 12 deep
107	1 in	M18 x 1.5; 12 deep
160	1 1/4 in	M26 x 1.5; 16 deep
250	1 1/4 in	M22 x 1.5; 14 deep

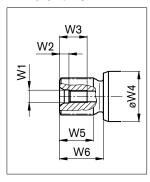
¹⁾ Hole ø22 with spot face ø48; 2 deep

For further ports, see variable motor A6VM (RE 91604)!

^{2) 1}x plugged

³⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

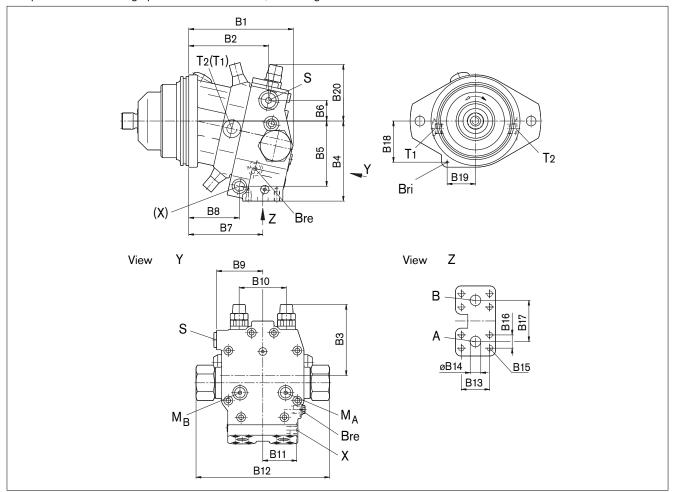

Standard flange L (sizes 28 to 160), M (size 250)

NG	A1	A2	А3	Α4	øΑ	ه۱	A7	A8	A9 (DII	N 13) ²⁾		A10	A11	A12	A13	A14	A15
28	91	20	47	10	ø1	9	50.8	23.8	M10 x 1	.5; 17 (deep	88	54	_	15	14	R10
55	123	24	77	14	ø1	9	50.8	23.8	M10 x 1	.5; 17	deep	91	50	22	15	16	R6
80	129	28	78	16	ø2	5	57.2	27.8	M12 x 1	.75; 17	deep	109.5	65	30	15	18	R10
107	137	30	84	18	ø2	5	57.2	27.8	M12 x 1	.75; 17	deep	121.8	72	35	15	18	R12
160	171	34	109	20	ø3	2	66.7	31.8	M14 x 2	2; 19 de	ер	122	67	29	15	20	R5
250	204	44	103	20	ø3	2	66.7	31.8	M14 x 2	2; 19 de	еер	131.5	-	-	14	25 ¹⁾	_
NG	A16 ³⁾	A17	A 1	18	A19	A20) A21	A22	øA23	A24	A25	A26	A27	A28	A29	O-rir	ng ⁴⁾
28	89	135-0.0	₂₅ 11	0	_	86	188	160	ø13.5	62.5	62.5	142	64	35.5	132	126x	4
55	92	160 _{-0.0}	₁₂₅ 13	9	132	104	1 235	200	ø17	72.5	72.5	166	59	35.5	152	150x	4
80	110.5	190-0.0	₁₂₉ 15	1	143	116	260	224	ø21	78.5	78.5	198	79	35.5	164	182x	4
107	122.8	200-0.0	₀₂₉ 16	8	160	132	2 286	250	ø21	86.5	86.5	210	82	40.5	180	192x	4
160	123	200-0.0	₀₂₉ 18	8	180	146	286	250	ø21	98.5	98.5	210	83	40.5	204	192x	4
250	133.5	260-0.0	ng 23	30	_	_	_	_	_	_	_	_	83.5	48.5	224	250x	5

Adapter flange U (size 107)

NG	A1	A2	A3 A	4 A	5.	A6	Α7	A8	A9 (D	IN 13) ²	2)	A10	A11	A12	A13	A14
107	150	30	96 18	3 1	5.5	25	57.2	27.8	M12 x	1.75; 1	7 deep	109.5	59.7	22.7	18	15
NG	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	O-ring ⁴⁾
107	R8	110.5	190-0.025	168	160	132	260	224	22	86.5	86.5	198	91.5	13.8	70	182x4

Drive shafts


NG	Splined shaft DIN 5480	W1 ²⁾⁵⁾	W2	W3	øW4	W5	W6	
28	A (W30x2x14x9g)	M10 x 1.5	7.5	22	ø35	27	35	
55	Z (W30x2x14x9g)	M12 x 1.75	9.5	28	ø45	27	35	
80	A (W40x2x18x9g)	M16 x 2	12	36	ø50	37	45	
107	Z (W40x2x18x9g)	M12 x 1.75	9.5	28	ø60	37	45	
160	A (W50x2x24x9g)	M16 x 2	12	36	ø70	44	55	
250	Z (W50x2x24x9g)	M16 x 2	12	36	ø60	49	58	

- 1) Hole ø22 with spot face ø48; 2 deep
- 2) Observe the general instructions on page 40 for the maximum tightening torques.
- 3) To shaft collar
- 4) The O-ring is not included in the delivery contents
- 5) Center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HA3 - Automatic control high-pressure related

Port plate 22 - SAE flange port A and B at bottom, with integrated counterbalance valve

Ports

NG	B1	B2	В3	B4	B5	В6	В7	B8	В9	B10	B11	B12	B13	B14	B15 (DIN 13) ²⁾	B16	B17
55	192	144	127	144	117	37	133	91	83	85	64	259	50.8	19	M10 x 1.5; 17 deep	23.8	80
80	198	150	136	162	132	40	138	93	83	90	69	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
107	202	161	139	171.5	143	40	144	99	85	96	72	259	57.2	25	M12 x 1.75; 17 deep	27.8	86
160	240	195	152	197	162	47	177	128	102	108	78	259	66.7	32	M14 x 2; 19 deep	31.8	94

NG	B18	B19	B20	Service line port A, B SAE J518	Drain port T ₁ ; T ₂ ¹⁾ DIN 3852 ²⁾	Infeed S DIN 3852 ²⁾
55	74	51	102	3/4 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
80	90	53	114	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
107	96	58	122	1 in	M18 x 1.5; 12 deep	M22 x 1.5; 14 deep
160	94	65	136	1 1/4 in	M26 x 1.5; 16 deep	M27 x 2; 16 deep

^{1) 1}x plugged

Note:

Port plate HZ3 and HA3 are not identical!

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designa- tion	Port for	Standard ⁵⁾	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁸⁾
X	Pilot signal (open with HZ and HA3T, plugged with HA3)	ISO 6149	M14 x 1.5; 11.5 deep	100	0
M_{A}, M_{B}	Measuring stroking chamber	DIN 3852	M14 x 1.5; 11.5 deep	420	Χ
Bre	Brake release, external	DIN 3852	M14 x 1.5; 11.5 deep	30	O/X ⁶⁾
Bri	Brake release, internal (not provided on versions with flange U)	_	ø4	30	X/O ⁷⁾

- 1) Observe the general instructions on page 40 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 39).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) Must be connected for external piping. Is plugged with internal ducting.
- 7) Is plugged with external ducting. Must be connected with internal piping.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Connector for solenoids

DEUTSCH DT04-2P-EP04

Sizes 28 to 160

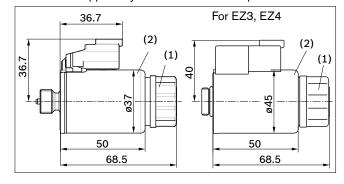
Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP67 DIN/EN 60529

and IP69K _____ DIN 40050-9

Circuit symbol


Mating connector

- 2 sockets

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804

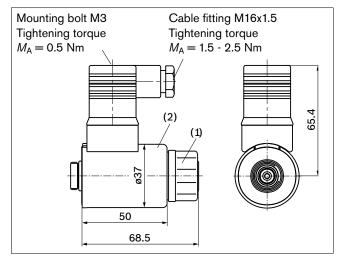
Consisting of: DT designation - 1 housing _____ DT06-2S-EP04 - 1 wedge _ W2S 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400

Size 250


Without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

IP65 **DIN/EN 60529**

The seal ring in the cable fitting is suitable for line diameters of 4.5 mm to 10 mm.

The HIRSCHMANN connector is included in the delivery contents of the motor.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

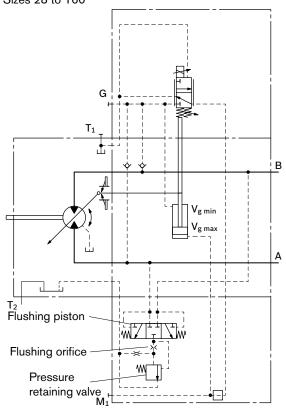
The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve) fixed setting 16 bar

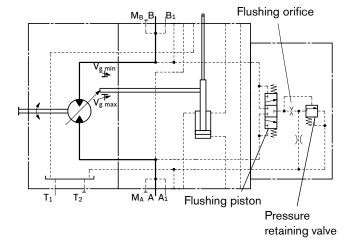
Switching pressure of flushing piston Δp

Flushing flow q_v


Orifices can be used to set the flushing flows as required. Following parameters are based on:

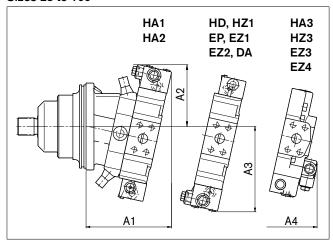
 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s $(p_{ND} = low pressure, p_G = case pressure)$

Size	Flushing flow q _V [L/min]	Mat. No. of orifice
28, 55	3.5	R909651766
80	5	R909419695
107	8	R909419696
160	10	R909419697
250	10	R909419697


With sizes 28 to 160, orifices can be supplied for flushing flows from 3.5 to - 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

Schematic EP Sizes 28 to 160

Schematic


Size 250

Flushing and boost pressure valve

Dimensions

Sizes 28 to 160

NG	A1	A2	А3	A4
28	152	125	161	_
55	182	133	176	176
80	194	141	192	176
107 (L flange)	204	143	202	186
107 (U flange)	217	143	202	199
160	245	154	220	_

Size 250

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve BVD and BVE

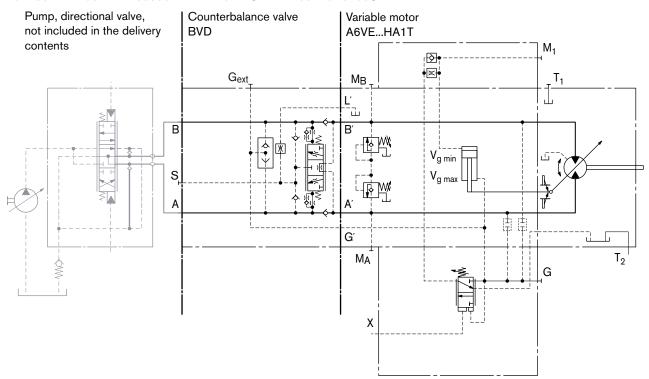
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note


- BVD available for sizes 55 to 160 and BVE available for sizes 107 and 160.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at $V_{g\ min}$ (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

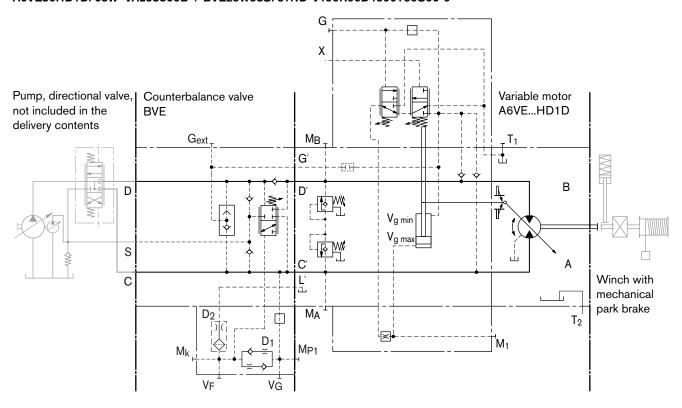
Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive for wheeled excavators A6VE80HA1T/63W-VAL38800A + BVD20F27S/41B-V03K16D0400S12

Counterbalance valve BVD and BVE


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

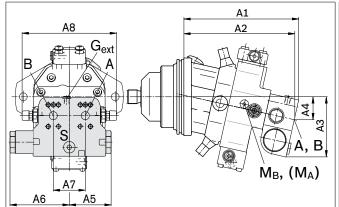
Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

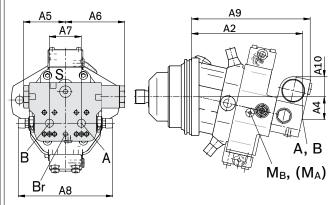
Example schematic for winch drive in cranes A6VE80HD1D/63W-VAL38800B + BVE25W38S/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without val	ve	Restricted values in operation with DBV and BVD/BVE										
Motor			DBV				BVD/BVE						
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code			
55	400/450	244	22	350/420	240	380	20	350/420	220	388			
80		312					(BVD)						
107		380	32		400	370				378			
107		380				380	25		320	388			
160		496					(BVD/BVE)						
250	350/400	675	On request										


DBV _____ pressure-relief valve
BVD ____ counterbalance valve, double-acting
BVE ____ counterbalance valve, one-sided

Counterbalance valve BVD and BVE


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A6VE...HA1/2

A6VE...HD or EP1)

A6VE	Counterbalance valve													
NGplate	Туре	Ports	Dimer	sions										
		A, B	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10		
5538	BVD2017	3/4 in	252	243	143	50	98	139	75	222	267	50		
8038	BVD2027	1 in	261	252	148	55	98	139	75	222	276	46		
10737	BVD2028	1 in	280	271	152	59	98	139	84	234	295	41		
10738	BVD2538	1 1/4 in	298	288	165	63	120.5	175	84	238	311	56		
16038	BVD2538	1 1/4 in	334	324	170	68	120.5	175	84	238	349	51		
10738	BVE2538	1 1/4 in	298	288	171	63	137	214	84	238	315	63		
16038	BVE2538	1 1/4 in	334	324	176	68	137	214	84	238	349	59		

Ports

Designation	Port for	Version	A6VE Plate	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁵⁾
A, B	Service line			SAE J518	see table above	420	0
S	Infeed	BVD20		DIN 3852 ⁴⁾	M22 x 1.5; 14 deep	30	Χ
		BVD25, E	BVE25	DIN 3852 ⁴⁾	M27 x 2; 16 deep	30	Χ
Br	Brake release,	L	7	DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	30	0
	reduced high-pressure		8	DIN 3852 ⁴⁾	M12 x 1.5; 12 deep	30	0
G _{ext}	Brake release, high-pressure	S		DIN 3852 ⁴⁾	M12 x 1.5; 12.5 deep	420	Х
$M_{A,}M_{B}$	Measuring pressure A and B			ISO 6149 ⁴⁾	M18 x 1.5; 14.5 deep	420	X

¹⁾ At the mounting version for the controls HD and EP, the cast-in port designations A and B on the counterbalance valve BVD do not correspond with the connection drawing of the A6VE motor.

X = Plugged (in normal operation)

The designation of the ports on the installation drawing of the motor is binding!

²⁾ Observe the general instructions on page 40 for the maximum tightening torques.

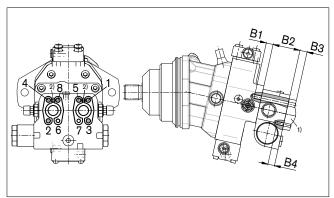
³⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

⁴⁾ The spot face can be deeper than specified in the appropriate standard.

⁵⁾ O = Must be connected (plugged on delivery)

Counterbalance valve BVD and BVE

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8) _____ length B1+B2+B3 2 screws (6, 7) _____ length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10 x 1.5	10.9	75
M12 x 1.75	10.9	130
M14 x 2	10.9	205

- 1) SAE flange
- 2) Tacking screw (M6 x 1, length = B1 + B2, DIN 912)

NGplate	5538	8038, 10737	10738, 16038
B1 ³⁾	M10 x 1.5 17 deep	M12 x 1.75 15 deep	M14 x 2 19 deep
B2	68	68	85
B3	customer-spec	ific	
B4	M10 x 1.5 15 deep	M12 x 1.75 16 deep	M14 x 2 19 deep

³⁾ Minimum required thread reach 1 x \emptyset -thread

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Counterbalance valve integrated BVI

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

The integrated counterbalance valve is designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking or traveling downhill.

Note

- The integrated counterbalance valve must be ordered additionally, see ordering code below.
- The counterbalance valve does not replace the mechanical service brake and park brake.
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Application options

- Track drive in excavator crawlers

Ordering code

	BVI			00		ı	
Ī	01	02	03	04	05		06

Counterbalance valve

01 Counterbalance valve integr	rated		BVI
Brake piston version	qv [L/min]	Material number	
Volume preselected	≤ 150	R902038832	51
	= 150 - 210	R902038936	52
00	= 210 - 270	R902038833	53
02	= 270 - 330	R902038834	54
	= 330 - 400	R902038835	55
	≥ 400	R902038836	56

	Throttle mounting	Material number	
03	Constant throttle	R909432302	8000
US	Throttle pin	R909651165	0603

Check valve

04 Without residual opening 00	00
--------------------------------	----

Brake release valve

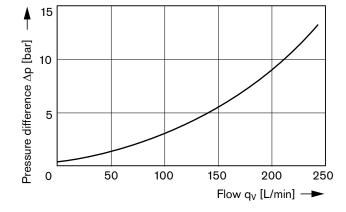
05	With brake release valve (standard with HZ)	Without disable function	1
05	With brake release valve (standard with HA)	With disable function	2

Standard / special version

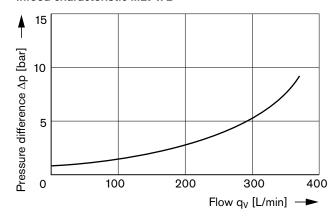
06	Standard version	0	
06	Special version	S]

Counterbalance valve integrated BVI

Table of values

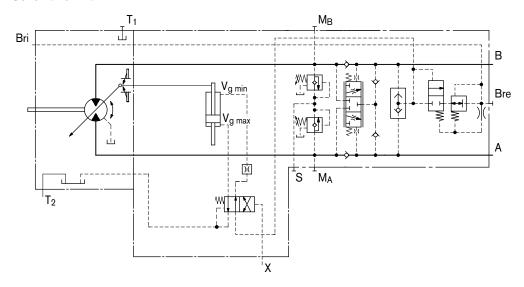

Operating pressure	nominal pressure	р	bar	350
	peak pressure	р	bar	420
Flow, maximum		q _{v max}	L/min	400
Counterbalance spool	start of opening	р	bar	12
	fully open	р	bar	26
Pressure-reducing valve for brake release	control pressure	р	bar	21+4
(fixed setting)	beginning of control	р	bar	10+4

Comparison between port plates 02 and 22

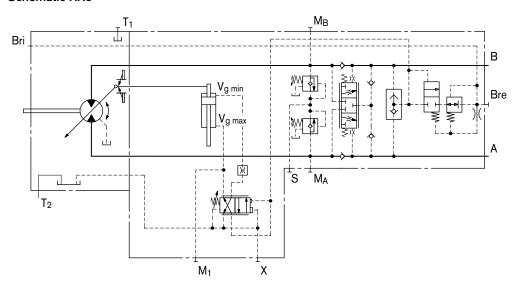

Maximum permissible input flow with restricted nominal pressure 350 bar, maximum pressure 420 bar

	Without restrictions standard plate (02)		Restricted values plate with integrated counterbalance valve (22)		
Motor					with BVI + DBV
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	Code	p _{nom} /p _{max} [bar]	q _V [L/min]
55	400/450	276	22	350/420	240
80		332			
107		410			
160		533			400

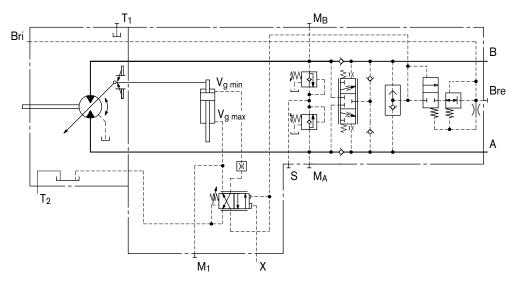
Infeed characteristic M22 x 1.5



Infeed characteristic M27 x 2



Counterbalance valve integrated BVI


Schematic HZ3

Schematic HA3

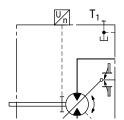
Schematic HA3.T

Speed sensor

38/40

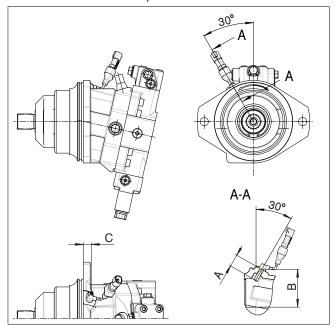
Version A6VE...U ("prepared for speed spensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.


With the speed sensor DSA mounted, a signal proportional to motor speed can be generated. The sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (DSA – RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt.


We recommend ordering the A6VE variable motor complete with installed sensor.

Schematic

Dimensions

Version "V" with mounted speed sensor

NG	55	80	107	160	250
Number of teeth	54	58	67	75	86
Α	32	32	32	32	on request
В	83.3	87.3	96.3	104.3	on request
С	26	16.5	14.2	28.5	on request

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 6.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

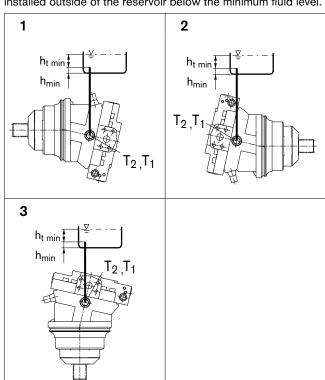
Note

In certain installation conditions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Installation position	Air bleed	Filling
1	_	T_2 , T_1
2	_	T_2 , T_1
3	_	T ₂ , T ₁
4	L ₁	T ₂ , T ₁ (L ₁)
5	L ₁	T ₂ , T ₁ (L ₁)
6	L ₁	T ₂ , T ₁ (L ₁)

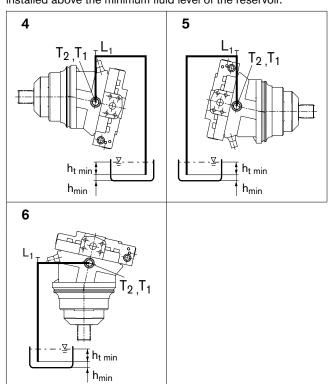
L₁ Filling / air bleed

T₁, T₂ Drain port


h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bot-

tom (100 mm)


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

General instructions

- The motor A6VE is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding tightening torques for the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO threads according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque of the	WAF hexagon socket of the
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V 1)	threaded plugs
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M26 x 1.5	230 Nm	120 Nm	12 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

- 1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
- $^{2)}$ In the "lightly oiled" state, the M_V is reduced to 17 Nm for M12 x 1.5.

An den Kelterwiesen 14

72160 Horb, Germany

Tel.: +49-7451-92-0

Fax: +49-7451-82-21

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49-7308-82-0 Fax: +49-7308-72-74

info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-motors © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.